Abstract

Abstract A high-resolution, multilevel, primitive equation model is initialized with climatological data to investigate the combined effects of wind and thermal forcing on the ocean circulation off Western Australia during the austral fall and winter, corresponding to the period of strongest flow for the anomalous Leeuwin Current. This process-oriented study builds on previous modeling studies, which have elucidated the role of thermal forcing in the generation of the Leeuwin Current and eddies, by including the additional effects of wind forcing for the eastern boundary current region off Western Australia. The ocean circulation is generated by the model using a combination of density forcing from the climatological Indian Ocean thermal structure, the influx of warm low-salinity waters from the North West (NW) Shelf, and the climatological wind stress. In the first experiment (case 1), forcing by the Indian Ocean and wind stress are imposed, while in the second experiment (case 2), the additional effects...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.