Abstract

We present a numerical implementation of a model for void coalescence and fracture in nonlinear elasticity. The model is similar to the Ambrosio–Tortorelli regularization of the standard free-discontinuity variational model for quasistatic brittle fracture. The main change is the introduction of a nonlinear polyconvex energy that allows for cavitation. This change requires new analytic and numerical techniques. We propose a numerical method based on alternating directional minimization and a stabilized Crouzeix–Raviart finite element discretization. The method is used in several experiments, including void coalescence, void creation under tensile stress, failure in perfect materials and in materials with hard inclusions. The experimental results show the ability of the model and the numerical method to study different failure mechanisms in rubber-like materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.