Abstract

Two-phase flow is studied numerically in two dimensions using a two-fluid equation system. The development is based on the surface-tension force terms incorporated in the momentum equations. The governing equations become hyperbolic type for which an upwind method such as flux vector splitting (FVS) avails. As a benchmark problem, a two-phase shock tube is first used to study the wave propagation characteristics and interaction between the gas and liquid phases. Fluid sedimentation due to the density difference and cavity growth in a duct with a bend are showed next. Advantages and capabilities of the present formulation are discussed in some detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.