Abstract

A numerical study has been carried out to analyze the effects of mixed convective flow over a three-dimensional cavity that lies at the bottom of a horizontal channel. The vertical walls of the cavity are isothermal and all other walls are adiabatic. The cavity is assumed to be cubic in geometry and the flow is laminar and incompressible. A direct numerical simulation is undertaken to investigate the flow structure, the heat transfer characteristics and the complex interaction between the induced stream flow at ambient temperature and the buoyancy-induced flow from the heated wall over a wide range of the Grashof number (10 3–10 6) and two Reynolds numbers Re = 100 and 1000. The computed thermal and flow fields are displayed and discussed in terms of the velocity fields, streamlines, the temperature distribution and the averaged Nusselt number at the heated and cooled walls. It is found that the flow becomes stable at moderate Grashof number and exhibit a three-dimensional structure, while for both high Reynolds and Grashof numbers the mixed convection effects come into play, push the recirculating zone further upstream and the flow becomes unsteady with Kelvin–Helmholtz instabilities at the shear layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.