Abstract

A crystal plasticity approach was used to study the effects of grain shape and texture on the deformation behavior of friction stir weld (FSW) microregions. The explicit stress-strain analysis was performed for two representative grain structures with equiaxed and extended grains. Grain orientations were assigned to simulate no texture or a weak or strong cubic texture. Calculations have shown that the texture gave rise to earlier plastic strain localization on a larger scale. The highest stresses were found to develop in a non-textured specimen with equiaxed grains where the grain boundaries served as a barrier to dislocation motion. In both equiaxed and extended grain structures with a strong cubic texture no pronounced strain localization was seen on the grain scale but mesoscale shear bands appeared early in the deformation process. The calculations have shown that the microstructure-based simulation is a reasonable tool to study the deformation behavior of FSW materials, which is difficult to be predicted within macroscopic models alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.