Abstract

Abstract The Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model Version 4 is used to simulate the cyclogenesis and the development of a low-level jet (LLJ) that occurred during the Taiwan Area Mesoscale Experiment intensive observing period 5 over southern China. Evaluation of the model results during a 36-h period indicates that the model successfully reproduces most principal features of this event, including cyclone path, intensification of the LLJ, distribution of precipitation, and the secondary circulation across the jet–front system. Sensitivity tests show that latent heat release is important for the deepening of the cyclone and the development of the LLJ, whereas the model results are not sensitive to boundary layer physics. The lee trough east of the Tibetan Plateau provides the initial low-level vorticity. The initial deepening of the lee cyclone and the development of the low-level southwesterly flow are caused by the vertical motion associated with the uppe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.