Abstract

Flow and heat transfer in a bottom-heated square cavity in a moderately rarefied gas is investigated using the R13 equations and the Navier–Stokes–Fourier equations. The results obtained are compared with those from the direct simulation Monte Carlo (DSMC) method with emphasis on understanding thermal flow characteristics from the slip flow to the early transition regime. The R13 theory gives satisfying results—including flow patterns in fair agreement with DSMC—in the transition regime, which the conventional Navier–Stokes–Fourier equations are not able to capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call