Abstract
AbstractWhen designing any earth retaining structure it is necessary to estimate the limiting earth pressures. This is usually achieved by assuming a linear pressure distrigution and by using active and passive pressure coefficients obtained by either limit equilibrium, stress field solutions of limit analysis. These coefficients are approximate in a theoretical sense, do not distinguish between modes of wall movement, and provide no pre‐failure information. In practice, wall movements are dependent on the construction method and support conditions provided. Any effect of such movements on earth pressures is therefore of practical interest. In this paper the finite element method is used to investigate the effect of the mode of wall movement on the generation of earth pressure. Both smooth and rough walls are considered. It is shown that the distribution of earth pressure is highly dependent on the assumed mode of deformation. The resultant forces on the wall are also affected, but to a lesser degree. The, effect of soil dilatation, the initial horizontal stress and the distribution of soil stiffness with depth are also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.