Abstract
In this study, the anthropogenic aerosol impact on the summer monsoon clouds and precipitation in East Asia is investigated using the NCAR Community Atmospheric Model version 5 (CAM5), a state-of-the-art climate model considering aerosol direct, semi-direct and indirect effects. The effects of all anthropogenic aerosols, and anthropogenic black carbon (BC), sulfate, and primary organic matter (POM) are decomposed from different sensitivity simulations. Anthropogenic sulfate and POM reduce the solar flux reaching the surface directly by scattering the solar radiation, and indirectly by increasing the cloud droplet number concentration and cloud liquid water path over East China. The surface air temperature over land is reduced, and the precipitation in North China is suppressed. Unlike anthropogenic sulfate and POM, anthropogenic BC does not have a significant effect on the air temperature at the surface, because of the reduction of the cloud liquid water path and the weakening of shortwave cloud forcing by its semi-direct effect. The anthropogenic BC strengthens the southwesterly wind over South China and leads to stronger deep convection at the 25°N–30°N latitudinal band. The effect of all anthropogenic aerosols on air temperature, clouds, and precipitation is not a linear summation of effects from individual anthropogenic sulfate, BC and POM. Overall all anthropogenic aerosols suppress the precipitation in North China and enhance the precipitation in South China and adjacent ocean regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.