Abstract

The dynamics of multiple cavitating bubbles is numerically simulated, with the ambient pressure lower than the saturated vapor pressure, using a pseudopotential lattice Boltzmann method (LBM) coupled with the Carnahan-Starling equation of state. Dual-bubble and multi-bubble systems are tested, and the method for the bubble cluster is validated. It is found that the bubble can either grow or collapse in the early stage, depending on the configuration of the bubble cluster, characterized by the bubble number, the inter-bubble distance and the initial radii. In the induced flow, the bubbles are mutually interacted. Scaling relations of the interaction are proposed according to the numerical results. With consideration of the interactions, the simplified Rayleigh-Plesset equations (RPEs) for multiple bubbles can describe the evolution of the bubbles approximately. The results may serve as the basis for improved cavitation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.