Abstract

This study is conducted to identify the synoptic weather patterns that are prone to cause high carbon monoxide (CO) concentrations observed at a mountain site, Lulin atmospheric background station (LABS), in Taiwan due to the biomass-burning activity in Southeast (SE) Asia. LABS is recognized as a clean background station. The study period targets the biomass-burning season (February to May) from 2007 to 2010. The synoptic weather patterns were classified using a two-stage clustering method with inputs from the Weather Research and Forecasting (WRF) meteorological model simulation result in a 27-km spatial grid. A 9-km resolution WRF modeling was performed additionally for 13 to 26 March 2007, when a high CO concentration reaching 500 ppb was observed at LABS. The simulation result indicates that not only the existence of the thermal forcing induced low pressure system formed in Indochina, but also the presence of the high terrain located in the northern part of SE Asia that further forced the uplift of the biomass-burning emissions. On the other hand, when the northeasterly monsoonal flow is strong enough and intruding into Indochina, this would hinder the development of the thermal low and weaken the upward movements, in turn preventing the transport of biomass-burning emissions from Indochina to the area of Taiwan. The simulation results also demonstrate that the location of the SE Asia high pressure system has a moderate effect on the particle dispersion path in the upper level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.