Abstract

An electric compressor and an electrically assisted turbocharger have been applied to a 2.0L Gasoline and a 2.2L Diesel engine 1D wave dynamic models. A novel approach is presented for evaluating transient response using swept frequency sine wave functions and Fourier Transforms. The maximum electrical power was limited to 6% of the maximum engine power (12kW and 5kW respectively). The systems were evaluated under steady state and transient conditions. Steady state simulations showed improved Brake Mean Effective Pressure (BMEP) at low engine speeds (below 2500rpm) but electric power demand was lower (3kW vs 8kW) when the electric compressor was on the high pressure side of the turbocharger. This was due to the surge limitation of the turbocharger compressor. The electrically assisted turbocharger offered little opportunity to increase low speed BMEP as it was constrained by compressor map width. Re-matching the turbo could address this but also compromise high engine speeds. BMEP frequency analysis was conducted in the region of 0.01–2Hz. This was repeated at fixed engine speeds between 1000rpm and 2000rpm. Spectral analysis of the simulated response showed that the non-assisted turbocharger could not follow the target for frequencies above 0.1Hz whereas the electrically-assisted device showed no appreciable drop in performance. When assessing the electric power consumption with the excitation frequency, a linear trend was observed at engine speeds below 1500rpm but more complex behavior was apparent above this speed where BMEP levels are high but exhaust energy was scarce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.