Abstract

Suspension feedstock in plasma spraying opened a new chapter in coating process with enhanced characteristics. The suspension carrying sub-micron up to few micron-sized particles is radially injected into an atmospheric plasma plume. Understanding the trajectory, velocity, and temperature of these small particles upon impacting on the substrate is a key factor to produce repeatable and controllable coatings. A three dimensional two-way coupled Eulerian-Lagrangian scheme is utilized to simulate the flow field of the plasma plume as well as the interactions between the evaporative suspension droplets with the gas phase. To model the breakup of droplets, Kelvin-Helmholtz Rayleigh-Taylor breakup model is used. After the breakup and evaporation of suspension is complete, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. The numerical results are validated against experiments using high-speed imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.