Abstract

The diverging microchannel has a gradually expanding cross-section area along the flow direction that can reduce flow instability and hence partial dry out. Utilizing the VOF method, Hardt and Wondra phase change model, and dynamic refined mesh scheme within a self-developed OpenFOAM solver, the vapor slug bubble’s growth inside diverging and uniform microchannels are investigated. The effects of mass flux, heat flux, and diverging gradient on the bubble behavior and flow instability are discussed. The bubble growth caused the upstream flow to slow down and downstream flow to speed up, which lead to the pressure drop oscillation. The velocity of the flow is higher in the diverging microchannel cases, either upstream or downstream the vapor slug bubble. These indicate the expanding cross-section area can promote the bubble to move toward the downstream outlet thus mitigate the blockage of the channel and flow instability. HIGHLIGHT The effects of slug bubble growth on flow and heat transfer are revealed through numerical investigation. The bubble growth process varied in the diverging and uniform microchannels. The diverging channel can help mitigate the blockage of the microchannel and flow instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.