Abstract

The pulsatile flow characteristics of a power law fluid in a channel filled with a homogeneous porous medium are investigated by employing the Darcy–Brinkman–Forchheimer model. Finite element method in conjunction with β-family of time discretization schemes for parabolic equation have been used to numerically solve the model for analyzing the flow. Influence of various parameters, such as power law index (n), Darcy number (Da*), Forchheimer coefficient (Γ), pulsatile amplitude parameter (A), and Womerseley parameter (α), on the flow properties have been analyzed. Increasing Γ or decreasing Da* leads to decrease in velocities and shear stress for all values of n.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call