Abstract

This article presents a numerical study on oscillating peristaltic flow of generalized Maxwell fluids through a porous medium. A sinusoidal model is employed for the oscillating flow regime. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a homogenous, isotropic porous medium. The governing equations are simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, and permeability parameter on the flow characteristics are depicted graphically. The size of the trapped bolus is slightly enhanced by increasing the magnitude of permeability parameter whereas it is decreased with increasing amplitude ratio. Furthermore, it is shown that in the entire pumping region and the free pumping region, both volumetric flow rate and pressure decrease with increasing relaxation time, whereas in the co-pumping region, the volumetric flow rate is elevated with rising magnitude of relaxation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.