Abstract
In this article, the Crank-Nicolson implicit finite difference method is utilized to obtain the numerical solutions of highly nonlinear coupled partial differential equations (PDEs) for the flow of supercritical fluid (SCF) over a vertical flat plate. Based on the equation of state (EOS) approach, suitable equations are derived to calculate the thermal expansion coefficient (\( \beta \)) values. Redlich–Kwong equation of state (RK-EOS), Peng-Robinson equation of state (PR-EOS), Van der Waals equation of state (VW-EOS) and Virial equation of state (Virial-EOS) are used in this study to evaluate \( \beta \) values. The calculated values of \( \beta \) based on RK-EOS is closer to the experimental values, which shows the greater accuracy of the RK-EOS over PR-EOS, VW-EOS and Virial-EOS models. Numerical simulations are performed for \( {\text{H}}_{2} {\text{O}} \) in three regions namely subcritical, supercritical and near critical regions. The unsteady velocity, temperature, average heat and momentum transport coefficients for different values of reduced pressure and reduced temperature are discussed based on the numerical results and are shown graphically across the boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.