Abstract

There exists a common observational phenomenon over the offshore areas of the northwest Pacific, that is, when several mesoscale vortices evolve suddenly into a larger scale typhoon-like vortex within one day, often with serious consequences. In this paper a series of numerical experiments has been designed and performed to emulate this evolution. The model is based on the Charney-Hasegawa-Mima equation, where there are around 40 initial meso-β vortices with parabolic profiles whose central positions, dimensions and intensities are all set stochastically. The self-organization process of these stochastically-distributed multiple meso-β vortices can be divided into two phases. During the first phase, a larger scale vortex similar to a typhoon-like vortex forms near the computational center through the gradual stretching and merging of adjacent meso-β vortices while there are more than 10 isolated vortices surrounding this typhoon-vortex. During the second phase, the isolated vortices are stretched and drawn into the typhoon-vortex circulation and become its spiral arms which are gradually incorporated into the inner area of the typhoon. This is then repeated as new isolated vortices are stretched and become new spiral arms until all the isolated vortices are drawn into the typhoon-vortex. The center of the self-organized typhoon-vortex rotates counterclockwise around the computational center when no topography is involved and is thus a transient vortex. When topography is present the vortex remain in the NE quadrant of the model domain, locked by the topography, and this quasi-steady vortex is thus capable of causing local disasters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call