Abstract
Steam is a common medium in thermal engineering. When it flows through a throttling element, the aerodynamic noise may occur due to the disturbance. In this investigation, superheated steam flowing through a Venturi tube, one of the main parts in a temperature and pressure regulation valve, at different thermal conditions is studied to analyze to effects of heat transfer on the acoustic power. With a high temperature and a low pressure, the superheated steam is treated as ideal gas. The flow velocity is high, so the k-epsilon turbulent model is used, with the compressible steam. The results show that under the adiabatic condition, the acoustic power mainly influenced by the turbulent characteristics, such as the dissipation rate and the turbulent kinetic energy. Comparing the acoustic power levels at different thermal conditions, it is found that a lower temperature results to a lower acoustic power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.