Abstract

Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating smooth and 45° ribbed rectangular channels for which heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β − 90° and 135° from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135° orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.