Abstract

Diagonally split Runge---Kutta (DSRK) time discretization methods are a class of implicit time-stepping schemes which offer both high-order convergence and a form of nonlinear stability known as unconditional contractivity. This combination is not possible within the classes of Runge---Kutta or linear multistep methods and therefore appears promising for the strong stability preserving (SSP) time-stepping community which is generally concerned with computing oscillation-free numerical solutions of PDEs. Using a variety of numerical test problems, we show that although second- and third-order unconditionally contractive DSRK methods do preserve the strong stability property for all time step-sizes, they suffer from order reduction at large step-sizes. Indeed, for time-steps larger than those typically chosen for explicit methods, these DSRK methods behave like first-order implicit methods. This is unfortunate, because it is precisely to allow a large time-step that we choose to use implicit methods. These results suggest that unconditionally contractive DSRK methods are limited in usefulness as they are unable to compete with either the first-order backward Euler method for large step-sizes or with Crank---Nicolson or high-order explicit SSP Runge---Kutta methods for smaller step-sizes. We also present stage order conditions for DSRK methods and show that the observed order reduction is associated with the necessarily low stage order of the unconditionally contractive DSRK methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.