Abstract

Due to the outstanding physical properties, Tungsten has been proposed for use in the divertor of future fusion devices. However, tungsten shall face strong particle bombardment from the plasma, which causes severe damage to the material. The purpose of this work is to build such an accurate analytical model which can predict the damages in target material like crack production and propagation after high intense pulsed ion beam irradiation. Hence, a two-dimensional finite element method is used to study the effect of high intense pulsed ion beam on tungsten surface numerically. To judge temperature and stress distribution in material, thermal conduction model is combined with non-linear fracture mechanics model and J-Integral parameter is used as a criterion to judge the crack propagation. Simulation results reveal that different crack heights and sizes can affect the results and there is a critical depth for crack propagation. The model gives good results to real experimental observations and has potential applications for different intense pulsed electron/plasma beams and different target materials as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call