Abstract

It is widely acknowledged that tree roots and other forms of buried biomass can have an adverse effect on the performance of ground-penetrating radars (GPRs). In this paper, we present analyses that examine that effect for ground-contacting GPR systems. A test site containing extensive root infiltration at Eglin Air Force Base, Florida, was excavated, and the root structure and soil were thoroughly characterized. A numerical simulator based on the discrete dipole approximation, which is an integral-equation-based method, was developed, validated, and subsequently used to compute scattering from root structures modeled by an ensemble of buried cylinders. An examination of the results is presented that quantifies the potential for false alarms and increased clutter due to buried roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.