Abstract

The battery thermal management system is critical to the operating safety of power batteries. To alleviate the temperature gradient effect caused by the high local temperature of the battery, a centrally dispersed square-spiral-ring (SSR) mini-channel liquid cooling plate is designed for power batteries in this study. Through the simplification of the battery model, this liquid cooling plate battery thermal management system is investigated numerically. The effects of the number of SSR channel laps, channel width, channel bend radius and inlet mass flow rate on the temperature characteristics of the battery and coolant pressure drop are investigated. The results indicate that increasing the SSR channel laps and narrowing the channel width have a beneficial role in improving the battery and liquid cooling plate temperature distribution. The maximum battery temperature can be significantly dropped and the uniformity of battery temperature distribution can be considerably improved by enhancing the inlet mass flow rate. Moreover, additional branch channels could further improve the uniformity of the temperature distribution and the gradient effect of the battery. The maximum temperature decreases to 33.63 °C and the maximum temperature difference reduces to 6.45 °C during the 2C discharge process at a temperature of 25 °C. Furthermore, the SSR liquid cooling plate with a 5 mm-wide branch channel enables lower maximum battery temperatures and better temperature uniformity with lower pump power consumption than the existing serpentine plate. All these results and evidence provide an option for the development of novel mini-channel liquid cooling plates for battery thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.