Abstract
This study analyses the influence of axial conduction and Biot number on the forced convective heat transfer characteristics in a duct filled with porous material that is thermally developing under local thermal non-equilibrium (LTNE). Channel walls are subjected to heat flux. The unidirectional flow in the porous region corresponds to the Darcy Brinkman model. A successive accelerated replacement (SAR) approach has been used to obtain numerical solutions. The investigations further quantify the impact of the Biot number on heat transfer enhancement. For fluid-solid phases, dimensionless temperatures, and local Nusselt number (<i>Nu<sub>&xi;</sub></i>), profiles are given in the present investigation. Validation of fully developed conditions for LTNE is done. The axial conduction effect is more at the low Peclet number <i>Pe<sub>H</sub></i> for all the Biot numbers Bi. For large <i>Pe<sub>H</sub></i>, the axial conduction effect is negligible. The <i>Nu<sub>&xi;</sub></i> decreases as the ratio of thermal conductivities, <i>&kappa;</i> and <i>Bi</i>, increases. LTNE is equivalent to local thermal equilibrium (LTE) for a large Bi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Special Topics & Reviews in Porous Media: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.