Abstract

Two-dimensional spin 1/2 antiferromagnetic Heisenberg models are numerically studied using Entanglement Perturbation Theory, where the ground state wave function is described by a product of local matrices defined at every site, and each matrix is optimized variationally to minimize the energy. We first apply this method for the spin 1/2 antiferromagnetic Heisenberg model on the square lattices to reproduce correctly the known ground state energy and the spin structure factors. Then, we study the spin 1/2 antiferromagnetic Heisenberg model on the triangular lattice with spatially anisotropic nearest neighbor couplings, J and J', to establish the ground state phase diagram as a function of J'/ J.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.