Abstract

In general, the applications of differential games for solving practical problems have been limited, because all calculations had to be done analytically. In this investigation, a simple and efficient numerical method for solving nonlinear nonzero-sum differential games with finite- and infinite-time horizon is presented. In both cases, derivation of open-loop Nash equilibria solutions usually leads to solving nonlinear boundary value problems for a system of ODEs. The proposed numerical method is based on a combination of minimum principle of Pontryagin and expanding the required approximate solutions as the elements of Chebyshev polynomials. Applying Chebyshev pseudospectral method, two-point boundary value problems in differential games are reduced to the solution of a system of algebraic equations. Finally, several examples are given to demonstrate the accuracy and efficiency of the proposed method and a comparison is made with the results obtained by fourth order Runge–Kutta method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.