Abstract

This paper presents a new numerical method for solving fractional optimal control problems (FOCPs). The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon Bernoulli polynomials. The operational matrices of fractional Riemann–Liouville integration and multiplication for Bernoulli polynomials are derived. The error upper bound for the operational matrix of the fractional integration is also given. The properties of Bernoulli polynomials are utilized to reduce the given optimization problems to the system of algebraic equations. By using Newton’s iterative method, this system is solved and the solution of FOCPs are achieved. Illustrative examples are included to demonstrate the validity and applicability of the technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.