Abstract

This paper explores the potential of four kesterite and stannite compounds: copper iron tin sulfide (CFTS), copper nitride tin sulfide (CNTS), copper zinc tin sulfide (CZTS), and copper zinc tin selenide (CTZSe), as solid-state p-type materials to replace the liquid electrolyte in dye-sensitized solar cell (DSSC) structures. Using the SCAPS 1-D numerical simulator, we incorporate zinc oxysulfide (ZnOS) as the electron transport layer (ETL) in the proposed DSSC configuration: FTO/ZnOS/N719 dye/kesterite/Au. Our simulations reveal outstanding performance with a 200 nm thickness of CZTSe as the solid-state electrolyte, achieving a conversion efficiency of 12.91 %. This efficiency surpasses that of CZTS (12.20 %), CNTS (12.47 %), and CFTS (5.53 %) at a selected 400 nm dye thickness. In comparison to previous simulation and experimental results, our proposed configurations represent a promising alternative for advancing solid-state DSSC technology. Furthermore, we investigate the influence of kesterite thickness (ranging from 50 nm to 300 nm) with a constant defect density of 1 × 1014 cm−3 on DSSC performance. Our findings indicate almost constant conversion efficiency, with only around a 0.2 % change, demonstrating stable DSSC operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.