Abstract

AbstractA phase field method based on the Cahn‐Hilliard equation was used to establish a numerical model for the motion and coalescence of multiple droplets under an electric field. The influencing factors of the droplet coalescence rate, velocity field and pressure field distributions, and droplet cluster motion and coalescence were investigated. The observations showed that the dynamic behaviors of droplets under the action of the electric field can be characterized as not coming together, coalescence, and breakup after coalescence. High‐speed (low‐speed) and high‐pressure (low‐pressure) regions are generated inside the droplet or near the interface under the action of the electric field, and the size, number, and location of these regions change over time. The results of this study offer an essential guide for developing new electrostatic coalescers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.