Abstract

We investigate the role of the inertia of the flow through the dendritic mushy zone in the numerical prediction of channel segregations during columnar solidification. The contribution of inertia is included in the momentum transport equation through the quadratic Forchheimer correction term. The study reveals a significant influence of the Forchheimer term in the vicinity of the liquidus front, i.e. at high liquid fractions. The natural convective flow field in this region is modified due to the additional inertial drag. This strongly influences the convective transport of solute and thereby incurs a modification of the dynamics of the advancement of the mushy zone. The most notable consequence is a significant decrease in the predicted channel segregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call