Abstract
Water inrush in deep mines is a major problem due to the complicated geological conditions of high water pressure, high stress, and high ground temperature. Because the high ground water and high ground stress have great influence on ground temperature distribution, the temperature change can be used to predict water inrush. In order to use ground temperature to predict water inrush from porous rock under thermal–hydraulic–mechanical (THM) coupling geological environments and simplify the process of establishing THM coupling model, a numerical simulation model specialized for using ground temperature to predict water inrush was established and a software specialized for establishing this model was developed by the secondary development of COMSOL Multiphysics. The temperature change law were studied under the impacts of the interaction of the water pressure, working face length, the geothermal gradient, and fault dip angle. Results indicate that the temperature in porous rock increases with increasing geothermal gradient, water pressure and fault dip angle, and decreases with increasing working face length. The ground temperature is higher in the heterogeneous porous media than in the homogeneous. At high water pressure, the temperature change is very large especially at the first few advancing steps of working face, which can provide an obvious temperature change to predict water inrush from porous rock. The software can provide a more convenient method to establish this model and use ground temperature to predict water inrush from porous rock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.