Abstract

A mesoporous TiO2 film consisting of different size nanocrystal particles without any organic binder was prepared on a conductive indium−tin oxide (ITO)-coated polyethylene naphthalate (PEN) plastic sheet by the doctor-blade method to fabricate flexible dye-sensitized photoanodes at 120 °C. It was found that the structure of the film affected the photovoltaic performance of the photoanode greatly. The mechanism of such effects was investigated both by simulation of porosity, surface area, average pore size, and electron diffusion coefficient of the mesoporous TiO2 film, and by impedance study for the electron transport and recombination in a dye-sensitized solar cell (DSC). The results showed that the electron transport and recombination dominated the operation of the DSC with such flexible photoanodes. The optimum photoanode was achieved, and the largest conversion efficiency obtained was 3.93%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.