Abstract

Traditional fossil energy sources still dominate the world energy structure. And fully utilizing biomass is a viable approach for energy transition. A bubbling fluidized bed has better heat and mass transfer, while particle agglomeration limits the development of its industrial application. In this paper, two-phase flow characteristics of a bubbling fluidized bed are investigated by combining numerical simulations and fluidized bed gasification experiments. Numerical simulations found that the bed fluidization height reached twice the initial fluidization height at the 0.054 m initial fluidization height with uniform particle distribution. Fluidized bed gasification experiments found that syngas yield increased with increasing temperature. The carbon conversion efficiency reached 79.3% and the effective gas production was 0.64 m3/kg at 850 °C. In addition, when the water vapor concentration reached 15%, the carbon conversion efficiency and effective gas production reached the maximum values of 86.01% and 0.81 m3/kg, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.