Abstract

There are many methods for computing stable and unstable manifolds in autonomous flows. When the flow is nonautonomous, however, difficulties arise since the hyperbolic trajectory to which these manifolds are anchored, and the local manifold emanation directions, are changing with time. This article utilizes recent results which approximate the time-variation of both these quantities to design a numerical algorithm which can obtain high resolution in global nonautonomous stable and unstable manifolds. In particular, good numerical approximation is possible locally near the anchor trajectory. Nonautonomous manifolds are computed for two examples: a Rossby wave situation which is highly chaotic, and a nonautonomus (time-aperiodic) Duffing oscillator model in which the manifold emanation directions are rapidly changing. The numerical method is validated and analyzed in these cases using finite-time Lyapunov exponent fields and exactly known nonautonomous manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.