Abstract
A numerical treatment for the Dirichlet boundary value problem on regular triangular grids for homogeneous Helmholtz equations is presented, which also applies to the convection-diffusion problems. The main characteristic of the method is that an accuracy estimate is provided in analytical form with a better evaluation than that obtained with the usual finite difference method. Besides, this classical method can be seen as a truncated series approximation to the proposed method. The method is developed from the analytical solutions for the Dirichlet problem on a ball together with an error evaluation of an integral on the corresponding circle, yielding O ( h 4 ) O(h^{4}) accuracy. Some numerical examples are discussed and the results are compared with other methods, with a consistent advantage to the solution obtained here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.