Abstract

In this study, an algorithm based on conjugate gradient method (CGM) is applied to estimate the unknown time dependent melt depth during laser material processing in liquid phase. The determination of the melt depth is treated as a one-dimensional, transient, inverse heat conduction problem (IHCP). It is assumed that no prior information is available for the functional form of the unknown melt depth, but it can be estimated by an inverse analysis with temperature measurements near the heated surface. The algorithm has been applied to aluminum, titanium and fused quartz and accurate melting depth and temperature distributions can also be returned. In addition, this methodology can also be applied to solve other problems such as calculating the cutting forces in nanomachining by atomic force microscopy (AFM), and estimating the heat sources in a X-ray lithographic process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.