Abstract

The eigenvibration properties of honeycomb sandwich panels are investigated in this paper. A new numerical modeling for eigenvibration analysis of the honeycomb sandwich panels is proposed under the assumption that the orthotropic shell and two kinds of beam elements represent face materials, adhesive layers and honeycomb core, respectively. The shell element is also connected to the beam element through the thickness. The effects of geometry of honeycomb core and thickness of face material on the eigenfrequency are examined through the comparisons between finite element simulation and experimental results. It is shown as a result that the eigenvibration properties depend strongly on the face material rigidity and honeycomb core geometry. The implications of the findings for the design of eigenvibration of honeycomb sandwich panels are discussed from the point of view of overall flexural rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.