Abstract

Minimization of parasitic losses in the internal combustion (IC) engine is essential for improved fuel efficiency and reduced emissions. Surface texturing has emerged as a method palliating these losses in instances where thin lubricant films lead to mixed or boundary regimes of lubrication. Such thin films are prevalent in contact of compression ring to cylinder liner at piston motion reversals because of momentary cessation of entraining motion. The paper provides combined solution of Reynolds equation, boundary interactions, and a gas flow model to predict the tribological conditions, particularly at piston reversals. This model is then validated against measurements using a floating liner for determination of in situ friction of an engine under motored condition. Very good agreement is obtained. The validated model is then used to ascertain the effect of surface texturing of the liner surface during reversals. Therefore, the paper is a combined study of numerical predictions and the effect of surface texturing. The predictions show that some marginal gains in engine performance can be expected with laser textured chevron features of shallow depth under certain operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.