Abstract

A new method of numerically solving a suitably formulated ionospheric wind dynamo equation for electrostatic potential and field is developed. Unlike in many other dynamo models, the upper boundary does not exist and the formulation asymptotically approaches the equatorial boundary condition. Therefore, it naturally incorporates the symmetric, asymmetric E- and F-region dynamo actions in any given ionosphere and any given global or local wind field. It also enables the equation to be posed as an initial value problem and solved numerically using an efficient, accurate, stable and fast integration method of ordinary differential equations. The numerical technique can be extended to compute three dimensional dynamo-generated electric currents in the ionosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.