Abstract

A novel decoupled solver has been developed that allows larger time steps than conventional decoupled Gummel algorithms and is less central processing unit (CPU) memory and time intensive than coupled Newton solvers. The order in which the quasi-hydrodynamic equations are solved exploits the large difference between the energy relaxation time, (typically 0.5 ps), and the dielectric relaxation time, tau /sub d/ (10 fs). The new decoupled scheme is numerically stable for time steps as large as 20* tau /sub d/. This makes it possible to reduce Cray Y-MP CPU times by 5-7 times compared to those required by conventional Gummel algorithms. This algorithm allows efficient analysis of GaAs MESFETs to study phenomena such as carrier heating near the drain, Gunn domain formation, and carrier injection into the semi-insulating substrate.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.