Abstract

A numerical model of carrier saturation velocity and drain current for the monolayer graphene field effect transistors (GFETs) is proposed by considering the exponential distribution of potential fluctuations in disordered graphene system. The carrier saturation velocity of GFET is investigated by the two-region model, and it is found to be affected not only by the carrier density, but also by the graphene disorder. The numerical solutions of the carrier density and carrier saturation velocity in the disordered GFETs yield clear and physical-based results. The simulated results of the drain current model show good consistency with the reported experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.