Abstract

Current intensive care ventilator-humidifier systems neither monitor nor adequately control inspired gas humidity. Problems of low delivered humidity and condensation within ventilator circuitry are commonly encountered. To help to address these problems, a numerical model of a complete ventilator-humidifier-patient intensive care system has been developed. The model, based on a finite difference technique, can predict pressures, flow-rates, temperatures and relative humidities at discrete points throughout the system. A comparison of numerical predictions and measurements in a real system is reported. A strong qualitative agreement is demonstrated in all cases studied, and a good quantitative agreement is obtained in most cases. It is concluded that such models could be used to assess methods of controlling ventilator-humidifier systems to prevent the occurrence of condensation. Similar models could be developed for other medical gas delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.