Abstract

Abstract The homogeneous residual circulation in Hauraki Gulf arising from the tides, steady winds, and oceanic inflows is considered by use of a depth‐averaged 2‐dimensional numerical model. Vertical current structure of the wind‐driven circulation is derived by using the computed wind‐induced sea surface slopes, the wind stress, and a prescribed vertical eddy viscosity. Tidal residual circulation is weak, less than 0.01 ms‐1 over most of the Gulf. The response of the Gulf to wind‐forcing indicates a preference for north‐west/south‐east directed winds, the flow through the Gulf being more than 3 times as strong as for winds from other directions. Surface currents are mainly in the wind direction, but subsurface currents reveal closed circulation cells in near‐coastal areas. Simple oceanic inflows give rise to water movements which penetrate to the inner part of the Gulf.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.