Abstract

In this paper, a two-dimensional numerical model with upper-bound coupled thermal analysis has been developed. The model is capable of simulating the hot rod extrusion process with variable ram speeds. The temperature distributions and the speed effects in hot extrusion are predicted in detail by the proposed numerical model. A generalized kinematically-admissible velocity field without velocity discontinuity is adopted. The temperatures are calculated by considering simultaneously the heat generation due to deformation and friction and heat transfer. A finite-difference method with an implicit time integration scheme is utilized to solve the two-dimensional heat conduction problem. Two mathematical models for variable ram speed profiles are proposd. Ram speed profiles satisfying the exit temperature and the load requirements are obtained. The proposed numerical simulation has been demonstrated to be a powerful tool for the design of hot extrusion processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call