Abstract

The general features of a numerical model, and of its extensions, for calculating the temperature and fluid velocity field in a three-dimensional workpiece undergoing deep penetration laser beam welding are described. In the current model, the deposition of power from the beam is represented by time-dependent boundary conditions on the equations of energy and momentum transfer. These boundary conditions are specified at each timestep on a surface whose configuration can change with time and upon which energy is deposited according to a specified power distribution. This model also includes the effects of the buoy-ancy force on the melt pool and of the surface tension gradient on the surface of the fluid. The coupled equations of energy, momentum transfer, and continuity combined with the time-dependent boundary conditions representing the keyhole and the moving boundaries of the workpiece are solved by using a specific implementation of the SIMPLE algorithm. The important features of the numerical methods used in the model are discussed. Isotherms and convection patterns calculated using the current model are presented, and their significance for predicting weldment properties is discussed. A significant result of the simulations is that they demonstrate the overwhelming influence of the keyhole vapor/liquid inter-face on fluid convection and conduction in deep penetration welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call