Abstract

We develop a numerical method to price discrete barrier options on an underlying described by the constant elasticity of variance model with jump-diffusion (CEVJD). In particular, the partial integro differential equation associated to this model is discretized in time using an operator splitting scheme whose accuracy is enhanced by repeated Richardson extrapolation. Such an approach allows us to approximate the differential terms and the jump integral by means of two different numerical techniques. Precisely, the spatial derivatives, which exist only in the weak sense, are discretized using a finite element method based on piecewise quadratic polynomials, whereas the jump integral is directly collocated at the mesh points, so that it can be easily evaluated by Simpson numerical quadrature. As shown by extensive numerical simulation, the proposed approach is very efficient from the computational standpoint, and performs significantly better than the finite difference scheme developed in Wade et al. [On smoothing of the Crank–Nicolson scheme and higher order schemes for pricing barrier options, J. Comput. Appl. Math. 204 (2007), pp. 144–158].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.