Abstract
This paper discusses a numerical model for determining the radial electromagnetic force of switched reluctance motors under air gap eccentricity (vertical and tilt eccentricities). The authors compare experimental and simulation results to demonstrate that the proposed model can accurately simulate the behavior of radial forces in switched reluctance motors under various types of air gap eccentricity. Moreover, the paper attempts to establish a dynamic model of the SRM and nalyze the performance of the radial electromagnetic force under air gap eccentricity in typical scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.