Abstract

We propose a novel computational method for the efficient simulation of two-phase flow in fractured porous media. Instead of refining the grid to capture the flow along the faults or fractures, we represent the latter as immersed interfaces, using a reduced model for the flow and suitable coupling conditions. We allow for non matching grids between the porous matrix and the fractures to increase the flexibility of the method in realistic cases. We employ the extended finite element method for the Darcy problem and a finite volume method that is able to handle cut cells and matrix-fracture interactions for the saturation equation. Moreover, we address through numerical experiments the problem of the choice of a suitable numerical flux in the case of a discontinuous flux function at the interface between the fracture and the porous matrix. A wrong approximate solution of the Riemann problem can yield unphysical solutions even in simple cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.