Abstract
Using a known interpolation formula we introduce a class of numerical methods for approximating the solutions of scalar initial value problems for first order differential equations, which can be identified as explicit Runge-Kutta methods. We determine bounds for the local truncation error and we also compare the convergence order and the stability region with those for explicit Runge-Kutta methods, which have convergence order equal with number of stages (i.e. with 2, 3 and 4 stages). The convergence order is only two, but our methods have a larger absolute stability region than the above mentioned methods. In the last section a numerical example is provided, and the obtained numerical approximation is compared with the corresponding exact solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.